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AIR FORCES AND MOMENTS ON TRIANGULAR AND RELATED WTNGS WITH SUBSONIC
LEADING EDGES OSCILLATING IN SUPERSOMC POTE.NTI.AL FLOW ‘

By CHARLES E. WATKINS andJULIAN H. BEBMAX

SUMMARY

Thi8 analysk treat~the airforceg and momentsin supmmnic
potential BOW on osm”[[atingtriangular wing$ and a series of
.weptback and arrow winge with who nic leading edges and
.Supersonic trai[ing edge~. For the unkg~undergoingmkusoida[
torsional oscillation+ timu[taneoudy with rertica[ tran~latiom,
the linearized re[oci~ potential i~ dei-iredin theform of a power
series in terms of a frequency parametir. This methodcan be
u.wfulfor treatment of similar problemsfor other plan forms
and for m“ngs undergoing other sinutwida[ motions. For tri-
angular un.ng$,a.~many terms of such a series expansion as
may be desired can be determined; hm.cerer,the terms ajter the
firdfete become rery cumbersome.

{.’io.wdexpreasionathat include the reducedjrequency to the
~fth pm.rer, an order tchich ia sujia”ent for a [arge claw of
practical app[ication~, are gicen jor the relocity potimtial and
for the components of chord~i~e section force and moment
coejh”enk.

These u~ing~arefound to ezkibit the powibility of undamped
toreional oscii[ationafor certain rangea of Mach number and
iocations of the aria of rotation. The mnges of thew parameters
are delineatedfor triimgu[ar wings.

IN’TRODUCTIOX

This report is concerned with the derivation of expressions
for the relocity potential and associated forces and moments
for oscillating triangular wings in supersonic flow. The
boundary-value problem for the linearized velocity potentiaI
for an apex-forward triangular wing oscillating in a super-
sonic main stream may be classified, according to reference
1. as “pur+- supmsonic” if the Ieading edges of the triangle
are outside the Mach cone emanating from the apex of the
triangle or “mixed supersonic” if the Ieading edges are inside
this Mach cone.

In tho purely supersonic case the principle of independence
holds; that is, the flow on the upper surface of the wing is
independent of the flow on the lower surface and vice versa.
C&rick and Rub-mow (reference 1) have shown that the
boundary-value problem for the velocity potential in the
purely supersonic case can be satisfied by simple distributions
of sources with local strength proportional to the local pre-
scribed normal velocity of the wing. NTeIson(reference 2)
has treated the oscillating triangular wing for this case to the
third power of the frequency.
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In the mixed supersonic case the principle of indeptmdence
doea not hold. Boundary-value problems for Iift-producing
wings in this case can be satisfiedby distributions of doublets;
the relation between doublet strength and normal velocity
of the wing is, however, in general, not simple. The deter-
mination of this reLationrequires the solution of an integral
equation thtitempIoys the potentiaI of a time-dependent unit
doublet as kernel and limits of integration that depmd on
Mach number and wing pIan form.

For treatment of problems that involve boundary condi-
tions that are independent of timmuch as constant angle
of attack, constant rate of pitching, and so forth-the doublet
potentiaI, employed as kerneI of the integral equation, is
considered independent of time and in th=e cases the integral
equations for triangular wings can be solved by a straight-
forward process.

For treatment of probIems of oscillating wings, however,
it is necessary to empIoy, as the kernel of the integral equa-
tions, a doublet potential that varies harmonically with time
and in this case the solution of the integral equation, gener-
ally, becomes very cumbersome. If the doublet potential or
kerneI is expanded in terms of the frequency of oscillation,
however, use can be made of knowledge of solutions of inte-
gral equations for probIems that are independent of time to
obtain an expanded form of solution for a wing undergoing
harmonic oscillations. Such a procedure was demonstrated
in treatments of rectangular viinga in references 3 and 4.

The purpose of the present report is to make use of thti
expanded form of the velocity potential to obtain the forces
and moments, based on the first few terms of this potential,
for a rigid triangular wing performing vertical and pitching
sinusoidal osculations in rnked supersonic flow. Although
as many terms of the expanded potential as may be desired
can be obtained after the &t few terms, the process becomes
very cumbersome. The flow normal to the Ieading edge is
subsonic but the flow normal to the trailing edge is considered
to be supersonic. This latter consideration impIies that the
potential derived for triangular p~an forms may be used to
calculate the aerodjmamic forces and moments for other pIan
forms that may be formed with the triangular wing by cut-
ting the trailing edges so that they lie ahead of the lIach
cones emanating from their foremost points.

Other approaches to the solution of the problem of oscillat-
ing trianguhw wings have been given by Robinson (reference
5), Haskind and Falkovich (reference 6), and by Stewartson”
With Sukonie LeMJncEdges OscUhtlngin Supuio Potenttd How” by Chda E.
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(reference 7). In both references 5 and 6 formal solutions
to the problem were obtained in terms of special systems of
curvilinear coordinates. Robinson’s solution was given in
terms of a doubIe summation of trilinear combinations of
Bessel functions of the first kind with Lamd functions of the.
first and second kinds. SimilarIy, the solution of Haskind
and Falkovich was given in terms of summations of Bessel
functions of the first kind combined with elliptic integrals
of the first and second kkds. In both references 5 and 6 the
potentials were not reduced to useful forma for calculating
forces and moments.

In reference 7 Stewartson makes an interesting though
specialized use of the LapIace transformation ti develop a
method whereby terms of the velocity potential for triangular
plan forms, expanded as herein, can be obtained. StewartsoD
gives formulas that, except for errorsprcsumaldy in printing,
can be used to develop the potential to the second power of
the frequency, but he omits many details in his derivation.
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SYMBOLS

disturbance-velocity potential
rectangular coordinates attached to wing

moving in negative xdirection
rectangular coordinates used to repre-

sent space location of doublets in
xy-plane

function defining mean ordinates of any
chordwise section -of” wing such as
Y=yl as shown in figure 1

vert.icaIvelocity at surface of wing aIong
chordwise section ah y=~l

abscissa of a~is of rotation of wing as
shown in figure 1

time
vertical displacement of axis of rotation
amplitudo of verticaI displacement of

axis of rotation, positive downward
angle of attack
amplitude of angular displacement

al)out axis of rotation, positive Ieading
edge up

time derivatives of h and a, respectively
velocity of main stream
velocity of sound
free-stream Mach nurn.ber(V/c)

frequency of oscillations
--

reduced frequency (ha/V)
haIf apex angle

represents functions of ~, x, and M
functions used to denote doublet “distri-

bution functions
constants associated with D. depending

Ollflc

z%pj,QI,R~ constants depending on PC
constants depending on PC and M

;; root chord of wing
8 semispan of wing
a slope of ray passing through vertex of ,

wing
~,fv,e,r ‘- dummy variabIes

density
ip locaI pressure difference
P- scction force (total force fit any spanwiw

station)
&L2,L3,~4 components of section force cocfiicicnts
M. section moment (total moment about.

z=zo at any spanwiso station)
M@*,M3,M4 components of section moment cocfll-

cicnts
z, total component of damping-moment

coeilicient.
po=glc
F’,E’ complete elliptic intqyals of the first

and second liirldsj respectively, with.-
rnoduli ~~ “”

ANALYSIS
BOUNDARY-VALUE PROBLEM POR THE VELOCITY POTENTIAL

Referred to a rectangular coordinate system moving
forward at a uniform supewmic speed in the negative
z-direction (see fig. 1), the differential equation for the
propagation of small disturbances thtit must be satisfid by
the velocity potentiaI is

(1)

The main governing boundaly condition to be satisfied by
the velocity potential is that the flow bc tangent to the
surface of tic wing or

(2)

where Z= is the verticql displacement of any point of the wing.
For the particular case of a wing independently performing
small sinusoidal pitching oscillations of amplitude % about
some spanwise axis r. and small sinusoidal vertical trans-
lations of amplitude h, the quantity Z= in equation (!2) is

Zm=e{*’[~z–zo)+ hO]=~z–zJ+h (3)

(See fig, 1 (b) for sketch showing instantaneous displacement
of section Y=V1.) For convenience, the frequency of oscil-
lation of both pitching and translator motion is denoted by
u. Considering these motions ta occur at separate frequen-
cies would add no difficulties to the derivation.

Substituting the expression for Z~ (equation (3)) into
equation (2) gives

?.o(x,~,t)= Va+4i(x-XJ +/i (4)

Equation (4) implies that the velocity potential may be
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expressed as the sum of separate ethcts due to position and
motion of the wing associated with individual terms of this
equation, nameIy

O=+a+h+dli (5)

DERIVATION OF $$

In order to obtain the analytical e.xpresaion for the
potential ~, it isnecessary to derive only one of the subsidia~
potentials appearing in equation (5), say ~=. The other
subsidiary potentials & and +i can then be obtained from
the derived eqmssion for t$=by simpIe comparison.
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In order to satisfy the boundary-vahe problem. for +~, a
convenient procedure is to start with the expandd form of
the potential of a uniform distribution of doublets. Then,
for a given power of the frequency of oscilktion this poten-
tial, as w-U be shown in the following analysis, can be
modified so that, when integration is made over the appropri-
ate region, the results satisfy the dif%re.ntiaIequation (1j to
the given power of the frequency and satisfy the condition
of tangential flow exactIy. The type of doubIet required
is that with its axis normaI to the pkme of the wing. The
potentiaI of such a doubIet may be obtained from the poten-
tial of a source, Iocated in t-hepiane of the viing, by partud
differentiation with respect to the direction normal to the
plane of the wing. Similarly, the potential of a distribution
of the required type of doublets can be obtained from a dis-
tribution of sources located in the pkme of the w-ing.

The potentiaI at (z,y,z) due to sources located at points
(&~,O) in region r (ilhstrated in fig. 2) of the W-plane which
satisfies the difTerentiaIequation (1) may be written as

where

and
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Expanding the integrand of equation (6) into a power series in G, collecting terms with respect to f, find differentiating tho
resulting integral with respect to z gives the expanded form of the potential of a uniform distribution of doublets, namely

.
~D Va a=—— JY[aol~+a@R+ . . . +a.oJF’-’+ . . . )+t(a,l~+a,,R+ . . . +a,.R2-+ . . . + . . . +tT~Zr

afid
_(- 1)=-1 ~ 2m.~

()““-(2m-2)! m
an, (9)

For convenience in the succeeding discuss~onand analysis equation (7) may be written in the following form:

(lo)

An interesting and significant property of equation (1O) is that the coefficient of each power of &satisfies the di.flercntird.-

()

s
equation (1) and has the form of a source potential with strength proportional to ~ e‘fat. This property may bo

.ti!

shown by writing thd coefficient of :“ as follows:

[ m‘-l)”-s(ERY-l=%’’o’(s~)% 1+.Z2 (2m–2)! M

A more gencrtd solution to equation (1) may thus be obtained by introducing properly chosen weight or distribution func-
tions (denoted by /lJ,(.f,q)) into the coefficients of $R in equation (10). Let this solutiou be denoted by #l; thcu it
wm be written as

(12)

Examination of equation (12) shows that, at the surface z= O, the potential 41 is determined by the first integral expression
but that both integral expressions may give rise to normal velocity. In succeeding steps in this an@sis it is shown that U]e
distribution functions D~(&~) in equation (12) can be detcimined so that the first integral expression tdwn alono will cxactb

MY()satisfy the boundary condition of tangential flow for &; that is —
a.z

= Va. AIso, any additional normal velocity that
s-o

aris= from tho second integral expression can be canceled, to the required order, by consideration of addit.iomddou.blct sohl-
tions ta equation (l). The problem of satisfying the boundary-value problem for the velocity potential $= may thus bc re-
duced to that of detmnining the appropriate distribution functions and additional solutions to equation (l).

In order to show that the first integral expression in equation (12) can be made to satisfy tlm boundary condition for 4.,
the coefficient Vcia”l appearing in this equation is first considered. If the analytical expression for tho Oocfflciont anl
(equation (8)) is multiplied by N and summed with respect to n, the result is identically Va. This result may be shown
as follows:

(13)

It is significant that this identity holds if only terms in ~ to any given power are considered. For example, retaining
only terms including ~ to the fifth power gives

( -d+z’(%%)+’’c%)l=va
x’ -~–p+~~’x’ (14)
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Next consider the normal veIocity at z=O associated with +,, namely

Examination of this equation and equation (13) reveals that the fit integnd expression on the right side of equation (15)
yields I ‘a exactly, provided that.the distriiut ion functions are determined so that. the following integral equation is satisfied:

(16)

The kernel of this integral equation htis the form of a steady~tate doublet potential. The problem of determining the
distribution furwt.ionsfor this case is therefore analogous to determining distribution functions for certain steady~tate problems
The distribution functions for steady-state problems, at.least for those involving conical flow, can be determined by a straight-
forward process. The main details of this process are given in the appendix, where a method of solving equation (16) for a
triangular wing is derived and the distribution functions required to deri-ie the velocitty potential for this w-ingto the fifth
power of Z are given. It is to be noted that the method derived for solving equation (16) for a triangular vring maybe
generalized to apply to various plan forms and to problems of satisfying the boundary conditions for various velocity
distributions.

From this point on, the analysis is restricted to the deriv-at.ionof terms of the expanded potential involving Z to the fifth
power. ‘I’he method of deriving these first few terms is quite general and can be used to obtain as many additional terms of
the expanded potentitd as may be desired. As pretiously pointed out, however, term of the potential after the fit few
become very unmieldy.

If the appropriate distribution functions are known for terms involving= to the fifth power, equation (15) may be writ-
ten as foIIows:

WI= I’”LY+Wa (17)
where

is the additiomd vertical velocity atilng from the second integmd expression in equation (12) involving ~ to the fift.h
prover. In order to maintain the boundary condition for +=, thii additional velocity W*must be canceIed. As pre-
viously pointed out this canceling, to a required order, can be achieved by considering other doublet solutions to equa-

tion (l). For this particular case consider relations & and z, similar to & (equation (12)) having the following forms:

The vertical vekity distributions 761and I& to the fifth power of G, arisii from these expressions are

(19a)

(19b)

(20a)

(20b)

In Ithese ‘equations the distribution functions no, ml, and so forth can be determined, as discussed subsequently, by the
method given in the appendix so that ZF1+ZJ is identically equal in value but opposite in sign to wz. When these functions
are determined, the boundary condition for ~. is satisfied by W1+751+IFZ=l%, which implies that- the potentiaI ~c to the
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fifth power of G is given by the sum

4==+1+71+71 (21)
to this power of G.

Expressions for ~= (n=O, 1, 2, 3) and ~, (n=O, 1) are given together with expressions for other distribution
functions Ds (n=O, 1, 2, 3, 4, 5) in the appendix. In regard to the determination of ~~ and D., it may appear necessary, in
order to formulate integral equations for these functions, to perform the generally unwieldy integrations of tho type

(22)

appearing in equation (15). In general, however, the information necessaryfor the determination of the functions ~, and ~~
can be obtained, as is done in the derivation of the functions Ds in the appendix, by examining the wdues of these integraIa

y t some particular value of e.and their derivativea with regard to the paramckr 6=; a

Retum”ing to equation (21) and introducing into this equation the expression for dl (equation (12)) and the expressions

for 71 and $, (equations (19)), each ta the fifth power of G, gives for the potential #. to this power of & the following result.:

(23]

Since it maybe shown, as in reference 8, for example, t-hat

equation (23) reduces, at z=O, to

which, after the expressions for the distribution functions given in the appendix are substituted and the terms are
regrouped, may be written in the following simple form:
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The quantities .4., u,, and so forth in this equation are part

‘j ‘j which areof a group of quantities At and ~j=Pj+P+~

defined in the appendi--; these quantities are suitable for
writing the potential and expressions subsequently derived
for forces and moments in simp~eform. The quantities ~i,

}’j, Qj, and Rj are functions only of the product PC (ratio of
tangent of the haIf apex angle of the triangle to the Mach
tingle) and are tabulated for some values of PC in table I
and are shown plotted in figures 3 and 4, respectively. The
quantities UJ,which are functions of Mach number M and
the product IW’, may be evaluated for particular values of
M from the values of Pj, Q,, and R, in table I or from the
plots in figure 4.

The quantities AO and .41 are the same, as should be
expected, as the parameters associated, respectively, with
constant angle of attack and constant pitching of triangular
wings of references 9 and 10.

Expressions for the potentials 1#~and dkcan be obtained
by the method dkwussed for obtaining ~=, or they can be
obtained to the fifth order of Z by compmison and synthesis
from equation (23). After simpIiication these espre=ions
are

-$A=4Y ~I:@e–y’ [Air–iZ(uS-A3PV)- arixg-u~P2y’x)+

iwffl@’4+ uId32y2z2+tn;w) +ZF(ulars+ algfPy2d+

(26)

Ai

Fmuits3.-Variation d thaqwdtks.4,.~,and%i anfmctionsof~=8C.

At fM= 1 or ~=~~ which is the condition at which the Mach

Iines from the apex of the triangle coincide w-it-hthe leadq
edges of the triangle, equations (23), (26), and (27] reduce,
respectively, to
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h)ac.l= {
4&@q7p ~

3/hr
_:(42L@v9)_

& [(11M2+7)z3–(2M+ 7)@2@]+

.-
al~~~lz [2(13~@+27)x’+3(~lz–21 )~’Y’x~–

(4fiP-9)19%41+ 4158%oM4 [(457~f’+2046dlP+

.

297)z6+2(118M4- 1221Afl—297)@&-

I
(168M’-396W-297)K@4x] “–y (+i)kw-1 (29)

(30)

Equations (28), (29), and (30) cm also be obtained by going
to the Iimit 19C=1 in the expanded potential for triangular
wings with supersonic leadhg edges (see, for example, refcr-
ence 2 for results to the third power of Z) or by integrating
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the expanded potential of a unit source over the region oc-
cupied by the wing with ~e= 1. Equations (28), (29), and
(30) therefore seine as a check on the results given in equa-
tions (25’), (26), and (27), respectively.

For values of the product PC such that B%*<1, equa-
tions (25), (26), and (27) reduce, respectively, to

4== VC2>czx~—f (31)

(33)

These expressions are the counterpart of the potential associ-
ated with triangular wings of wni&ingIy small aspect. ratio
in steady flow (reference 11) and may thus be regarded as
tlLe potential ~=ociated with a small-aspect-ratio triangle
oscillating in pitch and vertical translation in either sub-
sonic or supersonic flow, provided that= remains finite. The
condition PC< 1 is obvioudy satisfied for all vahms of C
when M= 1. However, as M~l, the -raIue of G becomes
infinitt~and the expaniled potential, as treated herein, be-
conw%meaningless.

FORCUkXDMOM&VTS

.ls pointed out in the introduction, the velocity potential
for tl~~*triangular wi~~ can be used to calculate the aero-
dynamic forces and moments for other plan forms that can
iw formed from the triangular wing by cutting the trailing

edges so that they lie ahead of the Jlach cones emanating
from their foremost points. Sketches of different plan forms
thus obtained are shown in figure 5.

The force and moment coefficients desirable for most flutter
calculations are those that yield the spanwise variation in
these quantities or chordwise force and moment coefficients.
These coefficients are obtained by inte@ating the pressure
difference along any chord for the forces and the “pressure
difference multiplied by a moment. arm for the moments. A
convenient procedure in deriving these quantities is tu intro-

duce the reduced frequency parameter ~=k and to employ

the variables z, y, and .rOin a new sense as nondimensional
quantities obtained by ditiding the old variables by the
marimurn chord 2b of the wing.

The pressure dtierence between the uppm and lower sur-
faces of the wing is

(r a+ aljAp=—2p 2b ax+ at
)

——— (34)

P.

(a) Pf.

FUiUEEL-Vartatfon of tht quantitiesP,, Q, andl?fasfunctimsofpi
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The force, positive downward, at any section of any of the
plan forms ahown in iigure 5 may be expressed as

(35)

where q has the following values with respect to thr clifferent
configurations shown in figure 5:

In plan

In plan

In plan form C

In plan

form A
Xl=l (36a)

form B

~1=1—: (36b)

Zl=l+: ---- ., . . _ -- (36c)

form D

Aftm tlw expression for 4, given by the sum of equationa
(25), (26), and (27), is substituted into equation (35) and
the integration is performed, the results may bc reduced to
the form

[
‘“ L1+iLJ+m(L+i~4)P= —4PbVk?@Ut ~( 1

(37)

where

Czl /l. M4k’@
[

y~Cosh-1 — ~— ~ (u*+4p’c’u4)
Y 1

[
A. 41bPkx?

L,=q@x:–y’ ~– ~P, (3M%~–P’uJ- 4$$’ (3MV%r,+tTJ+ —-5P816a46k3*f (51142u,-p2aJ+

1t3MUk3x?yz
(15 J4’C’U,O+U, 16aPk’y4 (15i’14’f?’C4u,l+ 2u5+5&C’uJ–5/9’@(7~+ ~5@c@

I 5&c* 1

——
[

L’=@’z:–y’$+$$ ( 4yz
kFj3%1-3h4fr8+3 M2fPu2-f14AJ-w (3 i’t4C%d+.M%,+ 3 W/92PAa-fFAJ+

16M4kzx14
5p

(5h14us– A42fi~u~-5APfl~u,B+~hcT)+ 1yyxpa (15 M4C%,+ M&-5 Myw%- 15Lw2/!32@u,,–

16A44k2y4
1

1%- 5fi4eU8)+~ (15 A44~’C4cll+23f2 U6+53d2f12~n6– 15A$219V4U17– 2@gT+ 513~d –-2xoL (38C)

(38a)

(3sb)



In a simiIar reamer, the moment (positive leading edge up) about the axis Z=X. is

M==-4b’
J
;=[.r-ro~ipdx

‘“ 31,+ i3fJ+cq(3fa+iMJ=—4p Fk2b2
[

T( 1
(39)

where

–[
.lf *=@7x7-y* ~ 2

16M ~k2x1d
3d*( .Jf% –19’AJ+&J31%+LMJ+ 5& (13’ur4JPCT4)– y&::2~2 (p’.,–

5&C%4+M%5+ 10WfK?%6)-~ (2P%,+ 5B’CC.+2AFUS+53FB2 PUd~2XO~I (40a)
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.Jf4=@’x12-y=
[

~ (@’A. –2M’Crl+2B2AJ–

4Y’(M2U,+IY&-&A,)- 16~#z14 (M’B’u,–
m

16M’kx:ys
4ili4r7+– f14c9+4 M’/9%r7)+ —1~ (M’19%*—

5h4’f14C’ud+ ill’uh + 10M41W%W fl’m— 5@YAa-

M’p’u,+ 1oM’f9’c’ug)+ y~c:’ (2M’p(l*+

5b~f14~u’+2~f4us+ 5~44@2@uB-2f14us+5 fln~A8–

2Ji2f3’uT+5il~/34t%J+
64 Mak8xle

~p,, (a@B2u9–

6i144U,Z-#14U15+6Mzf?%J-

7.$l’fl’~um+ M’uu +28 b~4f12~018-f?4~lb+

7/38@u16-.it12/92(rl~–28 M’/94(?’u,J–

64iWkaxt’y4
Io5#w’ (4Jflf1’a9+7wp4@u,o- 35 Ar@’c4rl,+

4M4UIZ+7~i4fi2Pula+70M~~C4~14— 4f14Ulb—

7f16Pu16+35@8c4u17-4APfl~u18- 7hPf14eu19—

7oMwc4um)- 64Makay8
~ (8MWJ,+ 14MW4C%O+

35M’t9°C4U11+8M’cu+ 14M4132C%1S+35M4f14C4u14—

8@4u1&—14@e@u14—85@8C4c17—8~~fi2n1a—

1
14M’f140’u,g– 35~@C4n2.0) – zZO(~~2+L4+zXoL2)

(40d)

In equation (37), for exa.rnph, the quantity (Ll+W,) is the
lift-force coefficient associated with vertical motion of the
wing. The real part .LIis in phase with the vertical position
of the wing and the complex part ~ is 90° out of phase with
this position, Siilar definitions apply to the lift coefficient
(L4+&) ~mciated with Pitig motion and to the moment
coefficients (Ml +iMJ and (M3+W4). The imaginary or
out-of-phase terms determine the aerodynamic damping
associated with different wing motions.

AIthough the expressions for the components of Iift-force
and moment cooflicients in equations (38) and (40], respec-
tively, are lengthy, they may be quite easily evaluated with
the aid of table I or the graphs in figures 3 and 4.

Y* m@2by

(B)Plan formA. (0)P12nformC.
(h) Plsn formB. (d) PlanJxrnD.

FIiIWRE5.-Sketchesffluztratlngdifferentplanformnfor wlrfchthoformcquztlorzs(23)znd
mom2ntequztlona(40)apply.

DISCUSSION

SAMPLE CALCULATIONS

In order to give some indication ttsto the general nature of
the spanwisc distribution of the different components of lift
and moment coefficients, equations (38) and (40) have been
evaluated at different spanwisc positions y for plan form A
(fig. 5(a)) for the following set of conditions: dC=O.5,
C= 1.0, 2.=0.6, M=~, and k=O.1. These sample r=
sulta are plotted as functions of spanwise position in figure G.
The spanwise variations of the different components of lift
force are shown in figure 6(a) and the corresponding vmin-
tions of moment coefficients, in figure G(b).

In figure 6 note that, for the particuhtr set of conditions
for this example, the maximum numerical values of the com-
ponents of moment coefficients Ml, 312, and h13 arc posit.ivc
and are. r.marthe tips of the wing, whereas the maximum
numerical wduc of the component M4 is negative but is also
near the tips. It may also be noted that the integrated
(ii spa.nwisedirection) values of the components of moment
coefficient, or components of total moment coefficient, would
in each case have the same sign as the maximum value of th[~
corresponding component of section moment coeificicnt.
This result is not necessarily true in general, bwause changing
some of the partimeterainvolved in the waluatiou of the span-
wise distribution of some components of both force and
moment coefficients may change the. distributions signifi-
cantly from those shown in figure 6.

The fact that the total component of moment coefficient
M4 is negative in the)example just discuwcd shows that, for
the conditions of the example, this term would not contribute
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to the aerod~mamicdamping but, on the contrary, would act
w a source of energy for the oscillating system. This cir-
cumstance is significant since it leads to the possibility of the
s@e-d~e~ f-freedom torsion~ instability discussed in the
following section.

UNDAMPED TOBSIOXAL OSCILLATIONS

The wing plan forms d~cussed herein, like twodimensiomd
and rectan.dar wings, eshibit the possibility of undamped
torsional oscillations for certain ranges of Mach number M
and location of axis of rotation zO. This fact is borne out,
as indicated in the preceding paragraph, by considering the
integrated (spanwise) value of the component of darnping
moment Mz associated with pitching or tom-omd motions.

o Y

‘da
/\// \/ \/ +~m .-–

\
\

/
●,45 -- \

/
\\

k

.4

M,

2

0

‘P@
40

r

(-b}Moment.

FIGmx &-Conc[udd

The main results of this phenomenon can be obtained by
considering very S1OWoscillations so that only terms in
equation (40d) for MA involving the reduced frequency k
to the order l/k need be retained. In this case,

(41)
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For the triangdm plan form (fig. 5 (a)) the integrated value ~, vanishes for the whole class of triangular wings with
or total component of moment coef%cicnt is ‘ supersonic leading edges; thtit is, for triangular winm where

=~ { –(2df’+1) AO+3(2i’l@-1)~,+=4 zps~

4xo[&–(2.W-l)A,] +4q?(W- I)A, } (42) I
In general, the condition of torsional stability or instability

depends on the sign and magnitude of ~+ in equation (42).
Positive values of ~1, indicate stable conditions and negative
vahm indicate the possibility of torsional instability.
Between the stublc and unstable conditions-that is, when
=4 vanishes-a borderline state of unstable c.quilibrium
separating dfimpcd and undamped torsional oscillationsexists.

The ranges of vahcs of Mach number M and location of
axis of rotation Z. for which ~44 vanishes for some selected
values of C= tan e are shown plotted in figure. 7. The
regions inside the curve in this figure indicate instability.
The. clashed curve, on which some of the solid curves ter-
minate, represents the 10CUSof values of M and ZOfor which

flCZ 1 (SCCfig. 5 of reference 2): It wiH~e noted ~htit ~~

vanishes for values of XOahead of tho root $ohord position,

It will also be noted that, as the vertes angle c=tnn-’ C’
decreases to 30°, t.hc range of vahm of Mach number for
which ~4 vanishes decreases sharply.

In conclusion, investigation of equation (42) shows that,
for a given value of the reduced frequency k, hfaeh numlwr
M, and location of the axis of rotation G, the magnitude
of the damping coefficient ~d generally decreases as C de-
creases and, eonsequently, torsiona~ instability is less likely
to occur with slender triangles thtm with wider triangles.

LANGLEY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LAA%LEY FIELD, ~~., June 19, 1961.
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APPENDIX

METHOD FOR DETERMINING DISTRIBUTION FUNCTIONS

In this appendix a method of obtaining the distribution functions is developed in detail. E-spressionsfor the distribution
functions required to drive the velocity potential to the fifth power of the frequency of oscillations and a set of functions
useffi in writing the expression for the potential in concise form is given.

As indicated in references 9 and 10, where the triangular wing is treated for constant W@ of attack and for constant
rolling and pitchii motions, a convenient form of the velocity potent.iaIcorresponding to a dist.ribution of vertical velocity
proportiontil to z“ is

(Al)

where a is the slope of a ray passing through the vertex of the wing (q =rf), El is the least value of t that causes the

denominator R in the integrand to vanish, and Fro(u)=; ~=(~,q) is the distribution function that. is to be de-

termined so that

(A2)

In equation (Al), the integrand is noted to be singular at the limb t=tl. A form of the integrancf which avoids this
difficulty is obttiined by making the following change of variables:

where r is the new variable of integration. With these substitutions equation (Al) becomes

J
c FJu)

r+U=: : -= ~J1–&d o ‘-’* (q–N cosh r)’~’d7

3+.()and the corresponding expression for w== — ~ which is an integd equation for F.(u), is, bz ,=*

(A3)

(A4)

= XR (A5)

In this equation the vahe of W*obtained by performmg the indicated integrations and then going to the limit z=O is the same
as the value that would be obtained by first going to the limit and then performing the integration but neglecting singularities,
pointed out subsequently, that arise when the value of a approaches the value of 6. Xlaking use of this fact reduces the

S79
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ceJcuIationsinvolved and simpMes the integral equation for F.. Thus pass~~ to the Iimit gives for equation (A5)

=x= (A6)

where A’a is the -due of ATat z= O. The requirement that the norrmd velocity be proportional to z“ and independent
of y impIies that dl derivatives of equation (A6) viith respect to y or o must ~anish or that F.(u) must be so determined
that the flmd mdue of the integraI in this equation be independent of 8. The requirement that all derivatives of equation
(A6) with respect to 8 vanish leads to other equations for F= and, after n+ 1 such differentiations, the equations
acquire forms for which solutions are known. The value of F, can then be determined from these known solutions

d=w=
by evaluating each of the derivatives ~ at any arbitrary value of @in the range —C<6<C as folIows:

The Kth derkative of w. Viithrespect to 6 (equation (A6)) gives the following integral equation for F.:

where

(rk+l)! ( ~(r+cosh 1- = I&+l][
) (

~u+cosh T ‘-LNO_L+
)m’)=(n+l–~! ATOcosh r–q ‘(n+2–~~. NOcosh r– q

K(K– 1)[n+1)! Br+cosh T ‘-’NO_,+
(n+3–K)! ( No cosh r– q)

. . . +(– l)’KUVO-K

When K=n+l, the expression for @(r) maybe recognized as being a binomial expression, namely

(n+ l)!@uN-,+q)”+’
‘(=lN,)”+’(q-N,Cosh r)’-

(n+ I)!z”+’
‘(–NJ”~’(cz-N, oosh r)”+’

Thus the integral equation corresponding to then+ 1 derivative of W=is

(M)

(As)

(A9)

Further differentiation of W- Ieads to other equations irmolving integrals simiIar to that in equation (A9) and, as will be seen
subsequently, is not necwsary for the determination of F.. The singukit.y at c=t9 in equation (A9) is a result of going to
the Iirnit z=O after equation”(A5) and, as previoueIy implied, is to be ignored.

Consider the follovi-ing equation similar to equation (A9):

sc fxu(dd~ so

_c(e—u)-’ (MO)

It is known by analogy with problems in incompressible flow and maybe shown by direct substitution and reduction that
this equation is satiis6eclfor any value of n (n=O, 1,2, . . .) by the function

This function also

the nth derivative.

+,(U)=J?=7 (All)

dxwz
satisfies equation (A9) for any value of n and satisfies equation (Ai) for all derivatives ~ beyond

A more general form of solution to equation (A1O) maybe shovin to be

f= .g”%w (Al?)
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where m is an integer and ms n. The validity of this solution follows, since —

and

Each term of the summation in equation

,=0 (?2:;;!(e-d’
U“=[e—(k)]”=s (A13)

(A14)

(A14) is found to have the form of the integrand in equation (AIO), from which
the function (A12) is concluded to ~atisfy equation (MO) and equation (A7) for all ml~es of ~~. - -

From the foregoing discussion and consideration the distribution function F=(u) may be uniquely determined in terms
of expression (AH) as follows:

Consider the expression .
F’.(U)=BJ,+I+J+ . . . +BJ= (A15)

vrherothe coefficients Bo, BI, . . . 13nare constants that are to be determined.
Each term on the right of equation (A15) is noted to satis~ equation (A7) for aH derivatives beyond the nth and a

total of n + 1 parameters is to be determined. H eqnwssion (A15) ia introduced into equations (A6) and (A7) and the indi-
cated integrations in equation (A6) and in equation (A7) for K= I, 2, . . . ~ are performed, n+ 1 linear equations are
obtained in BatBs, . . . B. from which these constants may be determined.

The integrations with respect to r in equations (A6) and (A7) me in general dficult and tedious to perform;
however, as previously pointed out it is only necessary to perform the integrations for some particular value of 6 in the
range –c<e<C. The integrals have their simpkst form when 8=0 ~d the ~t~ations can be made for this ~~ue of d
by reductions and use of for@as in reference 12.

The functions ~. and D= may ak~ be determined by the method discussed for determiningg the functions Dm. The
conditions to be satisfied by ~fi and D=, however, me determined by the vitue of W, equation (18), and its derivatives
with regard ta 6 at 8=0.

The distribution functions D.
method are as follows:

Do=.Aol’C2#’-~2

D,=.A, \’C2~2–7s

(n=O, 1, 2, 3, 4, 5), ~. (n=O, 1, 2, 3), and ~. (n=O, 1) calculated by the foregoing

●

( ‘)
Do= Xo+xl * ~’c’~’— qz

(

- fj’q

‘)
~1= &+Aa ~ >t72t2—q2

where, with the notations

and

{Note that the above expressions will vanish identically udess p and m are eithar both odd or both even.)
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where, with PC= po,

TT’:.O=E’

TJ,W=(5P$—3PO?F’+(2– 10P:+6P04)E’
2(1–pr?)*

w;,= 2P04F’–(PC?+P04)E’
2&(l-po9*

~4,:,=(5P04–3PO?F’+ (6–10P:+2p04)E’
(1–p:94’

~,: 0=(27PO%?lP04+12 POW’+ (6-55 P/+.65 PO’-2~POVE: .
6(1–po~a

> ..-=

J~7:,=(9P04– P0’)!7’-(3P;.+7 P04-?PO?E’ .,._
6j9’(1– PoT

]37: ,=(2Pt+9Pt–3P:)F; (6p:;5P:.+5Po!-4 P09E’. :. . - . . ...-.
—

~T%o=(56p&92p04 +72po’ –20po~F’+(8–117 pc/+202p04-149p$ +40po~E’
8(1–pc?)4

Tv: ,=(17P04–Zp$+PO?F’-(4 P$+18P04–8P$’+2 Pn~E’ .< _ _. . ___
8J32(1-P094

].~f 4=(8 P0’+8PO$)F’-(P04 +14 PI?+ P09E’ ~
8134(1‘pc?)4

~7~2=—
(6p: -3 0p~-30pOg+6pO~F' -(12-39p:+6pJ-29 pO`+l2pO?E'

2(1—poq’ .
. .
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~y11=(3P0’–6P$+ 51P$)F’–(6P24P0P+54 P0P+12POy~y~’
2@yl —poy

24p4 ~
w:,;=~ r.,.

2fP *
W:,,=p w..

LEADING EDGES OSOILI.ATING IN SUPERSONIC FLOW as3 .—.-—

~f.f ,=(m8pJ -276poG+216p04-60pO~F' +(24p06-351pOG+ 6MpOf-447p$+l2O)E'
(1–p;)’

w:,G=~400p$—833P04+994pr!-553 p:+ 120pJ~F’+(40–859 pj+1910p04—2115 poE+1136p$— MOp:Y E’
40[1– poqs

~J”g,= [115P04—2P05+19P$—4p~7F’–(20p~+ 151P+74P$+39P+8P20)E’ -
4oj3yl – p;)s

~l.: ~=(55p$+74pod–pJQ)F’–(5 p04+108p$+ 17PJ–2P010)E’
40/34(1-p~q’

~F4,=@Po*”-35 po*+l12poe+49p04 -6po~F'+(12 -4ipoz-22po+- 127pos+72pos- l6poI~E'

2(1 —po~s

H“;.4=@Po4-2Po’+131 pos– 4p010)F’-(6po’-3 lp04+ 108poE+53p08—8poS~E’
2pyl —p”y6

w~4=
(24p010+609P$—462 pOC+273p04-6 0pOfl)F'+(120-56 lp/+1026p04-969 pOa+48p$-48pO1~E'

(1 –p,y’

~,o=––(3P:– PO?F’–(4PI?-2p04)E’
6(1 ‘p”~’

TT7,0=-(12P$—7p04+ 3p$)F’—(19poz—17 po~+ 6pJ)E”
24(1—po~

Tr?,,=–
(3p”’+ 5p/)F’–(7po4+p$)E’

24flyl —p$y

Tr:o=—B’[(7P?+Po?F’–(2 +7P?– P09E’]

W-POT

m.,=— (PO4+7P07F’+(P& 7P04–2P07E’
2(1 — po*)*

~qo= _134[(5P?+3P03F’-(1 +7po~E’]
(1–poq’
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m,,=— -8’[(3P$–7P0’+12 Po~~–(~-17P;,+.19 p,oY~:~ . ,. . . .. . .
(1 – p;)’

F:,o=— (60p:-44p~+44p:- 12pO~F'-(l O7p:-I2GPOd+glpJe-2&O~E'
120(l–po9J ““-

.— ---

Tr;,,=– (15 Pt+34P$–p$)F’–(38 pO’+12po’-2po~E’
120/? yI—p:)4

13’[(33PJ+ 14 P04+P09F’-(6+46,P.J- 6.PO4+!2pa?E~ , .:. <.-. _ . . . ,,. _ .. . _
T;.o=-—

m-p?)’

ir:,,=— (6p04+44p08—2po~F’ +(3po*—34poJ-21 poo+4p06)E’ . _

ql-pt)’

3/9’[(p/+po4)F’-2 p$E’]F:.o=—–
2(1—po

CombimtlioDs of these functions useful in writing the potentird in cmciso form arc as follows:

P*= .-i,—A* Q2=0

Pa=; (AO–2A, +AJ Q,=–+

1’4=+

p,=; (Ao–3A,+ 3.&-A,,)

Q4=–+ .-.

Qs=–; (XO–.2-,)

l%=; (3.4*–.45) Q6=–@-m

—

PT=: (A1–2A,+A,) Q7=–+.

R,=o

R,=o

Ra= o

R4=0

R6= O

R,=o

RT=o

RB= O
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P,=& (A,–4AI+ 6A,–4A.+J4&)

Plo=& (6A,–4A.+A7)

P,,=$ “
.

PE=—~:. (A,–5A1+10.4,–10 A4+5.4*–A,)

P13=* (10.4s—IOA6+5ii7-AIJ

P,4––& (5A,–A,J

P,5=+(A,–3.42+3 .4,–AJ

P,,=; (3.45–3.4,–A,)

P,,= ‘$

P,,=; (A,–4.4,+6.&–4A6 +AJ

P,,=& (.A,0-4.4,+6A,-4.4J

PM=* (AII—4AJ

Q9=–~ (Xo–.fLX2+X4)

Q,,=:
.

Q,o=:(21,–1,)
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